Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Adv Sci (Weinh) ; 11(7): e2304171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030413

ABSTRACT

Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.


Subject(s)
Drug Carriers , Neoplasms , Humans , Contrast Media/chemistry , Gadolinium/chemistry , Macromolecular Substances , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
2.
Redox Rep ; 28(1): 2220531, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37581329

ABSTRACT

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Ascorbic Acid/pharmacology , Oxidation-Reduction , Oxidative Stress
3.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176145

ABSTRACT

Our study proposes a pharmacological strategy to target cancerous mitochondria via redox-cycling "mitocans" such as quinone/ascorbate (Q/A) redox-pairs, which makes cancer cells fragile and sensitive without adverse effects on normal cells and tissues. Eleven Q/A redox-pairs were tested on cultured cells and cancer-bearing mice. The following parameters were analyzed: cell proliferation/viability, mitochondrial superoxide, steady-state ATP, tissue redox-state, tumor-associated NADH oxidase (tNOX) expression, tumor growth, and survival. Q/A redox-pairs containing unprenylated quinones exhibited strong dose-dependent antiproliferative and cytotoxic effects on cancer cells, accompanied by overproduction of mitochondrial superoxide and accelerated ATP depletion. In normal cells, the same redox-pairs did not significantly affect the viability and energy homeostasis, but induced mild mitochondrial oxidative stress, which is well tolerated. Benzoquinone/ascorbate redox-pairs were more effective than naphthoquinone/ascorbate, with coenzyme Q0/ascorbate exhibiting the most pronounced anticancer effects in vitro and in vivo. Targeted anticancer effects of Q/A redox-pairs and their tolerance to normal cells and tissues are attributed to: (i) downregulation of quinone prenylation in cancer, leading to increased mitochondrial production of semiquinone and, consequently, superoxide; (ii) specific and accelerated redox-cycling of unprenylated quinones and ascorbate mainly in the impaired cancerous mitochondria due to their redox imbalance; and (iii) downregulation of tNOX.


Subject(s)
Neoplasms , Superoxides , Mice , Animals , Superoxides/metabolism , Oxidation-Reduction , Ascorbic Acid/metabolism , Quinones/metabolism , Neoplasms/metabolism , Adenosine Triphosphate/metabolism
4.
J Clin Biochem Nutr ; 72(2): 107-116, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36936873

ABSTRACT

The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.

5.
Anticancer Res ; 43(3): 1213-1220, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36854499

ABSTRACT

BACKGROUND/AIM: Mitochondria-targeted anticancer drugs ("mitocans") of natural origin are attractive candidates as adjuvants in cancer therapy. The redox couple menadione/ascorbate (M/A), which belongs to the "mitocans" family, induces selective oxidative stress in cancerous mitochondria and cells, respectively. DHA has also been found to regulate the mevalonate pathway, which is closely related to the prenylation of the cytotoxic menadione to the non-cytotoxic menaquinone. The aim of this study was to elucidate the ability of docosahexaenoic acid (DHA) to potentiate the anticancer effect of M/A by increasing ROS production, as well as affecting steady-state ATP levels in cancer cells. MATERIALS AND METHODS: The experiments were performed on leukemic lymphocyte Jurkat. Cells were treated with DHA, M/A, and their combination (M/A/DHA) and four parameters were examined using the following assays: cell viability and proliferation, steady-state ATP, mitochondrial superoxide, intracellular hydroperoxides. Three independent experiments with two or six parallel measurements were performed for each parameter. RESULTS: The triple combination M/A/DHA was characterized by much higher antiproliferative activity and cytotoxicity than M/A and DHA administered alone. DHA significantly accelerated M/A-induced ATP depletion in cells, which was accompanied by an additional increase in mitochondrial superoxide compared to cells treated with M/A or DHA alone. CONCLUSION: DHA significantly enhanced M/A-induced cytotoxicity in leukemic lymphocytes by inducing severe mitochondrial oxidative stress and accelerated ATP depletion. Selective DHA-mediated suppression of cholesterol synthesis in cancer cells (involved in the prenylation of cytotoxic menadione to the less cytotoxic phylloquinone), as well as DHA-mediated inhibition of superoxide dismutase are suggested to underlie the potentiation of the anticancer effect of M/A.


Subject(s)
Superoxides , Vitamin K 3 , Humans , Vitamin K 3/pharmacology , Docosahexaenoic Acids/pharmacology , Mitochondria , Oxidation-Reduction , Ascorbic Acid/pharmacology , Adenosine Triphosphate
6.
Eur Radiol ; 33(7): 5028-5036, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36719498

ABSTRACT

OBJECTIVES: To establish a CT lymphangiography method in mice via direct lymph node puncture. METHODS: We injected healthy mice (n = 8) with 50 µl of water-soluble iodine contrast agent (iomeprol; iodine concentration, 350 mg/mL) subcutaneously into the left-rear foot pad (interstitial injection) and 20 µl of the same contrast agent directly into the popliteal lymph node (direct puncture) 2 days later. Additionally, we performed interstitial MR lymphangiography on eight mice as a control group. We calculated the contrast ratio for each lymph node and visually assessed the depiction of lymph nodes and lymphatic vessels on a three-point scale. RESULTS: The contrast ratios of 2-min post-injection images of sacral and lumbar-aortic lymph nodes were 20.7 ± 16.6 (average ± standard deviation) and 17.1 ± 12.0 in the direct puncture group, which were significantly higher than those detected in the CT or MR interstitial lymphangiography groups (average, 1.8-3.6; p = 0.008-0.019). The visual assessment scores for sacral lymph nodes, lumbar-aortic lymph nodes, and cisterna chyli were significantly better in the direct puncture group than in the CT interstitial injection group (p = 0.036, 0.009 and 0.001, respectively). The lymphatic vessels between these structures were significantly better scored in direct puncture group than in the CT or MR interstitial lymphangiography groups at 2 min after injection (all p ≤ 0.05). CONCLUSIONS: In CT lymphangiography in mice, the direct lymph node puncture provides a better delineation of the lymphatic pathways than the CT/MR interstitial injection method. KEY POINTS: • The contrast ratios of 2-min post-injection images in the direct CT lymphangiography group were significantly higher than those of CT/MR interstitial lymphangiography groups. • The visibility of lymphatic vessels in subjective analysis in the direct CT lymphangiography group was significantly better in the direct puncture group than in the CT/MR interstitial lymphangiography groups. • CT lymphangiography with direct lymph node puncture can provide excellent lymphatic delineation with contrast being maximum at 2 min after injection.


Subject(s)
Iodine , Lymphography , Animals , Mice , Lymphography/methods , Contrast Media/pharmacology , Feasibility Studies , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Tomography, X-Ray Computed
7.
Mol Imaging Biol ; 25(5): 968-976, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36653627

ABSTRACT

PURPOSE: The development of magnetic resonance imaging (MRI) contrasting agents (CAs) that are safer and have a higher relaxivity than Gd(III)-based agents is a significant research topic. Herein, we propose the use of a Mn-based metal organic framework (MOF), Mn-MOF-74, characterized by a safe paramagnetic center, a coordinatively unsaturated site (CUS) for aquation, and a long rotational correlation time, endowing high relaxivity. Furthermore, biocompatibility and delivery to the tumor are generally expected for MOFs that are obtainable in the nanometer size range. PROCEDURE: Drop-wise mixing of 2,5-dihydroxyterephthalic acid (DHTP) and Mn(II) acetate yielded Mn-MOF-74 with a diameter of < 150 nm, which was then modified with 1-fivefold higher amounts of poly(ethylene glycol) (M.W. = 5000) to afford MOFs stably dispersed in water for at least 24 h. RESULTS: The longitudinal and transverse relaxivity of the PEG-modified MOF was in the range of r1 = 8.08-13.5 and r2 = 32.7-46.8 mM-1 s-1, respectively (1.0 T, 23.7-23.9 °C), being larger than those of typical Gd(III)- and Mn(II)-based CAs of single-nuclear metal complexes. The in vivo imaging of a tumor-bearing mouse clearly showed that the tumor could be readily recognized due to signal enhancement (117%) in T1-weighted images, whereas other tissues showed small signal changes. CONCLUSIONS: These results suggest that PEG-Mn-MOF-74 can be passively delivered to tumors and can act as a high-relaxivity T1 agent.

9.
Aging Cell ; 21(7): e13615, 2022 07.
Article in English | MEDLINE | ID: mdl-35662390

ABSTRACT

Intracellular accumulation of filamentous tau aggregates with progressive neuronal loss is a common characteristic of tauopathies. Although the neurodegenerative mechanism of tau-associated pathology remains unclear, molecular elements capable of degrading and/or sequestering neurotoxic tau species may suppress neurodegenerative progression. Here, we provide evidence that p62/SQSTM1, a ubiquitinated cargo receptor for selective autophagy, acts protectively against neuronal death and neuroinflammation provoked by abnormal tau accumulation. P301S mutant tau transgenic mice (line PS19) exhibited accumulation of neurofibrillary tangles with localization of p62 mostly in the brainstem, but neuronal loss with few neurofibrillary tangles in the hippocampus. In the hippocampus of PS19 mice, the p62 level was lower compared to the brainstem, and punctate accumulation of phosphorylated tau unaccompanied by co-localization of p62 was observed. In PS19 mice deficient in p62 (PS19/p62-KO), increased accumulation of phosphorylated tau, acceleration of neuronal loss, and exacerbation of neuroinflammation were observed in the hippocampus as compared with PS19 mice. In addition, increase of abnormal tau and neuroinflammation were observed in the brainstem of PS19/p62-KO. Immunostaining and dot-blot analysis with an antibody selectively recognizing tau dimers and higher-order oligomers revealed that oligomeric tau species in PS19/p62-KO mice were significantly accumulated as compared to PS19 mice, suggesting the requirement of p62 to eliminate disease-related oligomeric tau species. Our findings indicated that p62 exerts neuroprotection against tau pathologies by eliminating neurotoxic tau species, suggesting that the manipulative p62 and selective autophagy may provide an intrinsic therapy for the treatment of tauopathy.


Subject(s)
Sequestosome-1 Protein , Tauopathies , tau Proteins , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
10.
Redox Biol ; 53: 102337, 2022 07.
Article in English | MEDLINE | ID: mdl-35584568

ABSTRACT

Recent studies demonstrate that redox imbalance of NAD+/NADH and NADP+/NADPH pairs due to impaired respiration may trigger two "hidden" metabolic pathways on the crossroad between mitochondrial dysfunction, senescence, and proliferation: "ß-oxidation shuttle" and "hydride transfer complex (HTC) cycle". The "ß-oxidation shuttle" induces NAD+/NADH redox imbalance in mitochondria, while HTC cycle maintains the redox balance of cytosolic NAD+/NADH, increasing the redox disbalance of NADP+/NADPH. Senescence appears to depend on high cytoplasmic NADH but low NADPH, while proliferation depends on high cytoplasmic NAD+ and NADPH that are under mitochondrial control. Thus, activating or deactivating the HTC cycle can be crucial to cell fate - senescence or proliferation. These pathways are a source of enormous cataplerosis. They support the production of large amounts of NADPH and intermediates for lipid synthesis and membrane biogenesis, as well as for DNA synthesis.


Subject(s)
Mitochondria , NAD , Cell Proliferation , Mitochondria/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction
11.
PLoS One ; 17(4): e0266465, 2022.
Article in English | MEDLINE | ID: mdl-35439261

ABSTRACT

The purpose of this study was to compare parameter estimates for the 2-compartment and diffusion kurtosis imaging models obtained from diffusion-weighted imaging (DWI) of aquaporin-4 (AQP4) expression-controlled cells, and to look for biomarkers that indicate differences in the cell membrane water permeability. DWI was performed on AQP4-expressing and non-expressing cells and the signal was analyzed with the 2-compartment and diffusion kurtosis imaging models. For the 2-compartment model, the diffusion coefficients (Df, Ds) and volume fractions (Ff, Fs, Ff = 1-Fs) of the fast and slow compartments were estimated. For the diffusion kurtosis imaging model, estimates of the diffusion kurtosis (K) and corrected diffusion coefficient (D) were obtained. For the 2-compartment model, Ds and Fs showed clear differences between AQP4-expressing and non-expressing cells. Fs was also sensitive to cell density. There was no clear relationship with the cell type for the diffusion kurtosis imaging model parameters. Changes to cell membrane water permeability due to AQP4 expression affected DWI of cell suspensions. For the 2-compartment and diffusion kurtosis imaging models, Ds was the parameter most sensitive to differences in AQP4 expression.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Aquaporin 4/metabolism , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Water/metabolism
12.
RSC Adv ; 12(8): 5027-5030, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35425501

ABSTRACT

A curcumin derivative conjugated with Gd-DO3A (Gd-DO3A-Comp.B) was synthesised as an MRI contrast agent for detecting the amyloid-ß (Aß) fibrillation process. Gd-DO3A-Comp.B inhibited Aß aggregation significantly and detected the fibril growth at 20 µM of Aß with 10 µM of probe concentration by T 1-weighted MR imaging.

13.
Oxid Med Cell Longev ; 2022: 2339584, 2022.
Article in English | MEDLINE | ID: mdl-35178152

ABSTRACT

Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial ß-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated ß-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial ß-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition "ß-oxidation shuttle". It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.


Subject(s)
Fatty Acids/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Humans , Oxidation-Reduction
14.
Cancers (Basel) ; 14(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35158753

ABSTRACT

Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-ß1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-ß1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their "pro-oncogenic" functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy.

15.
Cancers (Basel) ; 14(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205619

ABSTRACT

A considerable amount of data have accumulated in the last decade on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. As a result, mFAO was found to coexist with abnormally activated fatty acid synthesis (FAS) and the mevalonate pathway. Recent studies have demonstrated that overactivated mitochondrial ß-oxidation may aggravate the impaired mitochondrial redox state and vice versa. Furthermore, the impaired redox state of cancerous mitochondria can ensure the continuous operation of ß-oxidation by disconnecting it from the Krebs cycle and connecting it to the citrate-malate shuttle. This could create a new metabolic state/pathway in cancer cells, which we have called the "ß-oxidation-citrate-malate shuttle", or "ß-oxidation shuttle" for short, which forces them to proliferate. The calculation of the phosphate/oxygen ratio indicates that it is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathways. The "ß-oxidation shuttle" is an unconventional mFAO, a separate metabolic pathway that has not yet been explored as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and, ultimately, a source of proliferation. The role of the "ß-oxidation shuttle" and its contribution to redox-altered cancer metabolism provides a new direction for the development of future anticancer strategies. This may represent the metabolic "secret" of cancer underlying hypoxia and genomic instability.

16.
Anticancer Res ; 42(1): 547-554, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969764

ABSTRACT

BACKGROUND/AIM: This study analysed the effect of α-tocopheryl succinate (α-TS) on the redox-state of leukemia and normal lymphocytes, as well as their sensitization to fifteen anticancer drugs. MATERIALS AND METHODS: Cell viability was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by FITC-Annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen species (ROS) and protein-carbonyl products. RESULTS: Most combinations (α-TS plus anticancer drug) exerted additive or antagonistic effects on the proliferation and viability of leukemia lymphocytes. α-TS combined with barasertib, bortezomib or lonafarnib showed a strong synergistic cytotoxic effect, which was best expressed in the case of barasestib. It was accompanied by impressive induction of apoptosis and increased production of ROS, but insignificant changes in protein-carbonyl levels. α-TS plus barasertib did not alter the viability and did not induce oxidative stress and apoptosis in normal lymphocytes. CONCLUSION: α-TS could be a promising adjuvant in second-line anticancer therapy, particularly in acute lymphoblastic leukemia, to reduce the therapeutic doses of barasertib, bortezomib, and lonafarnib, increasing their effectiveness and minimizing their side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Leukemia/drug therapy , alpha-Tocopherol/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Humans , Jurkat Cells/drug effects , Leukemia/genetics , Leukemia/pathology , Lymphocytes/drug effects , Lymphocytes/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species , Succinates/pharmacology
17.
Antioxid Redox Signal ; 36(1-3): 95-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34148403

ABSTRACT

Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.


Subject(s)
Contrast Media , Precision Medicine , Contrast Media/chemistry , Electron Spin Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Nitrogen Oxides/chemistry , Oxidation-Reduction
18.
J Cereb Blood Flow Metab ; 42(1): 197-212, 2022 01.
Article in English | MEDLINE | ID: mdl-34515548

ABSTRACT

To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.


Subject(s)
Epilepsies, Myoclonic/metabolism , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Wakefulness , gamma-Aminobutyric Acid/metabolism , Animals , Disease Models, Animal , Female , Magnetic Resonance Spectroscopy , Male , Mice
19.
Small Methods ; 5(8): e2100338, 2021 08.
Article in English | MEDLINE | ID: mdl-34927878

ABSTRACT

Blood vessels are present in all of the organs, reflecting their importance for oxygen and nutrient delivery to the cells. Until now, no organic fluorophore has been reported for the live imaging of endothelium although the layer is the key to blood vessel functions. Here, the discovery of a blood vessel organic probe at near-infrared (NIR) wavelength range (BV-NIR) through an engineered blood capillary-based screening system, which is a more physiological model than a conventional cell culture condition, is reported. This selected Cy5 based probe shows the highest specific adsorption property out of 240 candidates on the endothelium and is equivalent to an anti-CD31 antibody in terms of intensity. The BV-NIR probe indicating strong and stable in vitro, ex vivo, and in vivo imaging of the endothelium even after histological immunostaining processes shows potential as a convenient tool for live imaging as well as for covisualization with a specific antibody.


Subject(s)
Fluorescent Dyes , High-Throughput Screening Assays , Spectroscopy, Near-Infrared/methods
20.
Anticancer Res ; 41(12): 6067-6076, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34848461

ABSTRACT

BACKGROUND/AIM: We describe a pharmacological strategy for selectively targeting glioblastoma using a redox-active combination drug menadione/ascorbate (M/A), compared to the chemotherapeutic standard-of-care temozolomide (TMZ). MATERIALS AND METHODS: Experiments were conducted on glioblastoma mice (GS9L cell transplants - intracranial model), treated with M/A or TMZ. Tumor growth was monitored by magnetic resonance imaging. Effects of M/A and TMZ on cell viability and overproduction of mitochondrial superoxide were also evaluated on isolated glioblastoma cells (GS9L) and normal microglial cells (EOC2). RESULTS: M/A treatment suppressed tumor growth and increased survival without adverse drug-related side effects that were characteristic of TMZ. Survival was comparable with that of TMZ at the doses we have tested so far, although the effect of M/A on tumor growth was less pronounced than that of TMZ. M/A induced highly specific cytotoxicity accompanied by dose-dependent overproduction of mitochondrial superoxide in glioblastoma cells, but not in normal microglial cells. CONCLUSION: M/A differentiates glioblastoma cells from normal microglial cells, causing redox alterations and oxidative stress only in the tumor. This easier-to-tolerate treatment has a potential to support the surgery and conventional therapy of glioblastoma.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Glioblastoma/drug therapy , Standard of Care/standards , Temozolomide/therapeutic use , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Humans , Male , Mice , Mice, Nude , Temozolomide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...